Enumerative vs. Symplectic Invariants and Obstruction Bundles
نویسنده
چکیده
2 Spaces of Bubble Maps 6 2.1 Bubble Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 The Basic Gluing Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Curves with Marked Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 Bubble Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 Stratums of Bubble Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
منابع مشابه
. SG ] 3 J un 1 99 8 Gromov - Witten Invariants of Symplectic Sums
The natural sum operation for symplectic manifolds is defined by gluing along codimension two submanifolds. Specifically, let X be a symplectic 2n-manifold with a symplectic (2n − 2)submanifold V . Given a similar pair (Y, V ) with a symplectic identification V = V and a complex anti-linear isomorphism between the normal bundles of V and V , we can form the symplectic sum Z = X# V=V Y . This no...
متن کاملm at h . SG ] 7 J ul 1 99 8 Gromov - Witten Invariants of Symplectic Sums
The natural sum operation for symplectic manifolds is defined by gluing along codimension two submanifolds. Specifically, let X be a symplectic 2n-manifold with a symplectic (2n − 2)submanifold V . Given a similar pair (Y, V ) with a symplectic identification V = V and a complex anti-linear isomorphism between the normal bundles of V and V , we can form the symplectic sum Z = X# V=V Y . This no...
متن کاملEnumerative invariants of stongly semipositive real symplectic six-manifolds
Following the approach of Gromov and Witten [4, 22], we define invariants under deformation of stongly semipositive real symplectic six-manifolds. These invariants provide lower bounds in real enumerative geometry, namely for the number of real rational J-holomorphic curves which realize a given homology class and pass through a given real configuration of points.
متن کامل60 20 07 v 3 9 F eb 1 99 6 VIRTUAL MODULI CYCLES AND GW - INVARIANTS
The study of moduli spaces plays a fundamental role in our understanding geometry and topology of algebraic manifolds, or more generally, symplectic manifolds. One example is the Donaldson theory (and more recently the Seiberg-Witten invariants), which gives rise to differential invariants of 4-manifolds [Do]. When the underlying manifold is an algebraic surface, then it is the intersection the...
متن کاملEnumeration of Genus-Two Curves with a Fixed Complex Structure in P and P
We express the genus-two fixed-complex-structure enumerative invariants of P and P in terms of the genus-zero enumerative invariants. The approach is to relate each genus-two fixedcomplex-structure enumerative invariant to the corresponding symplectic invariant.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005